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For two-dimensional uniformly frustrated XY models the group of symmetry 
spontaneously broken in the ground state is a cross product of the group of 
two-dimensional rotations by some discrete group of finite order. Different 
possibilities of phase transitions in such systems are investigated. The transition 
to the Coulomb gas with noninteger charges is widely used when analyzing the 
properties of relevant topological excitations. The number of these excitations 
includes not only domain walls and traditional (integer) vortices, but also vor- 
tices with a fractional number of circulation quanta which are to be localized at 
bends and intersections of domain walls. The types of possible phase transitions 
prove to be dependent on their relative sequence: in the case the vanishing of 
domain wall free energy occurs earlier (at increasing temperature) than the dis- 
sociation of pairs of ordinary vortices, the second phase transition is to be 
associated with dissociation of pairs of fractional vortices. The general 
statements are illustrated with a number of examples. 

KEY WORDS: Two-dimensional systems; phase transitions; frustrated XY 
models; topological excitations; fractional vortices; Josephson junctions; super- 
fluid 3He-A thin films. 

1. I N T R O D U C T I O N  

This paper presents the second part of the study of phase transitions 
possible in two-dimensional uniformly frustrated X Y  models. The first part, 
which will be hereafter referred to as part I, is published as a separate 
paper. (~) The models considered can be described by the Hamiltonian 

H = ~ ~/'((~Or-- (pr , - -~/r r , )  (1.1)  
(rr') 
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Here the phase variables Cpr are defined on the sites of a regular two-dimen- 
sional lattice and the summation is performed over pairs of nearest 
neighbors. V(A~o) is an even periodic function of its argument A~0 and has 
its minimum at Aq~ = 0. The constants ~/rr '  (0rr' ~ --0r'r) are defined on lat- 
tice bonds in such manner that their sum along the perimeter of each 
elementary plaquette assumes the same value 2nf. 

The Hamiltonian (1.1) with V(A~0)= -Jcos(A(p) can be applied for 
the description of regular arrays of Josephson junctions in a perpendicular 
magnetic field (see, e.g., Refs. (2-5)). In part I a model with the triangular 
lattice and f =  1 has been considered in detail. This so-called AF XY(t) 
model can also describe a planar antiferromagnet. 

If the interaction function V(Aqo) is chosen in the Berezinskii-Villain 
form(6, 7) 

exp = exp - ~ (zlq~- 2gp) 2 
p = - - o O  

(1.2) 

the partition function of the model (1.1) can be transformed to the par- 
tition function of two-dimensional Coulomb gas with charges assuming 
noninteger values shifted with respect to the integer values by _f.(8~ The 
small variation of the interaction function V(Aq)) does not affect the 
classification of topological defects. Therefore, when analyzing the latter we 
shall widely use the Coulomb gas representation, the rigorous transfor- 
mation to which is possible only in the case of Berezinskii Villain inter- 
action (1.2). 

In Section 2 phase transitions possible in the model (1.1) with f =  1 
and the square lattice are studied. The models considered in part I and Sec- 
tion 2 of this paper are equivalent to the lattice Coulomb gas with half- 
integer charges. The possibility of experimental realization of such 
Coulomb gas in superfluid 3He-A thin films is discussed in Section 3. In 
Section 4 the general scheme of phase transitions possible in the models 
(1.1) with rational f is presented. The types of phase transitions associated 
with breaking of the discrete and continuous symmetries prove to be 
dependent on the relationship between the transition temperatures. The 
general statements of Section 4 are illustrated in Section 5 on the example 
of the model with the honeycomb lattice and f = �89 In Section 6 some exam- 
ples of the models with the additional (accidental) degeneracy of the 
ground state are considered. In such cases the structures of the ordered 
states at low temperatures can be determined only when taking into 
account the free energy of spin waves. In Section 7 the dependence of 
transition temperatures on f is briefly discussed. 
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2. VILLAIN'S ODD MODEL (SQUARE LATTICE, f=�89 

The AF XY(t) model considered in part I is equivalent to Coulomb 
gas with half-integer charges defined on a honeycomb lattice. We will begin 
our acquaintance with other uniformly frustrated X Y  models by studying a 
model equivalent to the Coulomb gas with half-integer charges on a square 
lattice. Such a model can be interpreted as a model of a magnet possessing 
both ferromagnetic and antiferromagnetic bonds (so-called Villain's odd 
model, ~9/ Fig. 1). 

Properties of this model prove to be rather close to those of the 
AF XY(t) model. In particular, the symmetry group which is broken in the 
ground state is the same: U(1)• Z2. ~9) The twofold discrete degeneracy 
manifests itself in the Coulomb gas representation as the twofold 
degeneracy of the ground state in which charges + �89 and - �89 are situated in 
check order. ~2) 

As in the case of the AF XY(t) model the relevant excitations are 
integer excessive charges (positive or negative) and neutral domain walls. 
In the case of a square lattice, fractional charges prove to be localized at 
every bend of the domain wall. Using the simple algorithm described in 
part I (Section 3), one can easily verify that at the points a, b, c, and e of 
the domain wall (Fig. 2) the charges +�88 4,~ I, and +�88 are localized, 
respectively. At the intersection of two domain walls the half-integer charge 
is localized (Fig. 2, point d). 

The inevitable appearence of the fractional charge at every bend of the 
domain wall is due to a specific form of the "correspondence rules" 
analogous to those given by (2.1) of part I. If one fixes the state at one side 

l I 1 i 
. Q ~ Q  Q"V'Vk)~ O - -  

" V ' Q ~  Q ' v w ' k ~  Q m 

1 
l 
Q'V~ 

1 1 1 I 
Fig. 1. Villain's odd model~9): a planar magnet with ferromagnetic and antiferromagnetic 
bonds (shown by straight and by wiggly lines, respectively). Each plaquette contains an odd 
number of antiferromagnetic bonds. 
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Fig. 2. Domain  walls in Coulomb gas of half-integer charges on a square lattice. 

of the domain wall, the choice of a state at the other side yielding true 
Hamiltonian extremum becomes dependent not only on the position of the 
domain wall but also on its orientation. The states obtained if a horizontal 
or a vertical domain wall is crossed can be transformed one into another 
by the rotation by the angle of 90 ~ Thus, if a domain wall has a 90 ~ bend, 
a vortex with a quarter of a circulation quantum must be localized at this 
bend to make the configuration of the field ~0 a true Hamiltonian 
extremum. 

The "generalized" phase diagram assumes roughly the same form as 
the phase diagram of the generalized AF XY(t) model, depicted in Fig. 4 of 
part I. At the phase transition on the line de in this case the octets of points 
of the order parameter degeneracy space merge into single points, each 
octet consisting of two quarters belonging to different circumferences. On 
the line df the dissociation of "quarter vortices" takes place. 

The possibility of a "domain wall" transition occurring at the tem- 
perature low enough for fractional vortices to be bound in pairs in the con- 
s]dered case is relatively narrow due to the absence of such domain wall 
fluctuations that would not induce the appearance of fractional vortices. If 
one considers the model (1.1) with an interaction function V(A~o) having 
such a form that the domain wall energy (per unit length) Jw is much less 
than a prelogarithmic factor Jv in the long ranged vortex-vortex inter- 
action, the typical form of the thermally activated defects (closed domain 
walls) will be such as is shown in Fig. 3. With increasing temperature up to 
Jv/ln(Jv/Jw) the mean distance between these defects becomes the same 
order as their size. Their merging with further increasing temperature can 
lead to appearence of infinite domain walls which corresponds to vanishing 
of the domain wall free energy. In contrast to the AF XY(t) model the type 
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Fig. 3. Typical form of thermally activated closed domain walls for Villain's odd model on a 
square lattice. 

of the transition on the line bf cannot be determined by means of studying 
some discrete symmetry model with the nearest neighbor interaction, 
because in the initial model all bends and intersections of the domain walls 
interact logarithmically. 

The Monte Carlo stimulation of the model (1.1) with f = �89 on a square 
lattice (2~ showed the logarithmical divergence of the specific heat, charac- 
teristic of the Ising transition. The accuracy of the obtained results did not 
let the authors make definite conclusions about the relative order of the 
Berezinskii-Kosterlit~Thouless (BKT) transition, associated with the 
breaking of the continuous symmetry, and of the Ising-type transition. 

Our analysis of relevant topological excitations enables us to assert 
unambiguously that if the "domain wall" transition is of the Ising type, 
then the BKT transition must occur at lower temperatures. In the case of 
the inverse relative order of the transitions the domain wall transition 
would correspond to some Z4 x Z2 model with long-ranged interaction and 
the BKT transition would be associated with dissociation of quarter-vortex 
pairs and would occur when the helicity modulus is equal to (32/n)T. 

In the remaining part of this section some general properties of the 
defects interaction that are widely used in part I and in this paper will be 
illustrated on the example of the Villain's odd model with a square lattice. 

The partition function of the considered model with the accuracy of a 
nonsingular factor can be presented as the partition function of the 
Coulomb gas with half-integer charges re(R), defined on the sites of the 
dual (also square) lattice (see Ref. (10)). The corresponding Hamiltonian 
has the form: 

H= ~ m(R)G(R-R')m(R') (2.1) 
R,R' 
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with interaction G ( R -  R') given by 

(. d2k ~ 
G(R - R') = j ~ G(k) exp ik(R - R') 

where 

(2.2) 

G(k) = (2~) 2 ,1/[4 sinZ(kx/2) + 4 sinZ(ky/2)] (2.3) 

(the lattice unit is used like a length unit). 
The configuration of charges in the ground state is explicitly given by: 

mm)(R) = +_�89 exp ik ,R;  k ,  = (re, ~) (2.4) 

Different signs in (2.4) correspond to two possible ground states. Sub- 
stituting (2.4) into (2.1) one can easily find the ground state energy: 

E/~ = ~NG(k, ) (2.5) 

where N is the total number of sites of the dual lattice (infinite in ther- 
modynamic limit). 

Consider the excessive charges on the background of the ground state. 
Let the configuration of charges be 

m(R) = m/~ + rn'. C~as 1 - m'- cSRa 2 (2.6) 

i.e., there is an excessive charge m' at the point R1, and an excessive charge 
- m '  at the point r 2. The energy of the configuration (2.6) is given by 

Ezv = E(~ (m')2 [G(0) -- G(R1 - R2)] 
1 ~  t + i G ( k , ) [ m  �9 m ( ~  rn(~ (2.7) 

Equations (2.5) and (2.7) are valid for an arbitrary form of the interaction 
function (2.2) (retaining the same form of the ground state). 

It becomes evident from (2.7) that the regular background of half- 
integer charges does not change the strength of the logarithmic interaction 
of excessive charges. Only their "core" energy is affected and is varied by a 
value proportional to m'(R)mm)(R). The interaction entering the 
Hamiltonian (2.1) being quadratic in m(R), these statements remain valid 
for an arbitrary number of nonzero excessive charges m'(R). Considering 
the structure of (2.7) one can further extend this statement for an arbitrary 
regular background structure (with f not necessarily equal to �89 

Let us calculate then the domain walls interaction energy. Two 
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domain walls separated by a distance L can be represented, for instance, by 
the configuration of charges: 

~m(~ x~<0 or x > , L + l  (2.8) 
m(R) = [ _m(O)(R) ' 1 ~< x ~< L 

where R = (x, y). Substituting (2.8) into (2.1) we can find that the respec- 
tive energy is given by 

(2x)2 Ja2 E l -  (-a) L] 
E 2 w = E m ) + N Y  (1 - a ) ( 1  + a )  3 (2.9) 

Here Ny is the size of the system in the direction of the y axis (parallel to 
domain walls) and a - - 3 -  ~8~0.1716.  Equation (2.9) was obtained for a 
particular form of the interaction function given by (2.3). 

Thus we can conclude that domain walls have finite energy per unit 
length and their interaction decays exponentially with a distance. The latter 
circumstance allows us to neglect this interaction in a qualitative analysis 
of possible phase transitions. 

3. C O U L O M B  G A S  W I T H  H A L F - I N T E G E R  C H A R G E S  A N D  
S U P E R F L U I D  Z H e - A  T H I N  F I L M S  

The models considered in part I and Section 2 of this paper allow for a 
transformation to the lattice Coulomb gas with half-integer charges. It 
seems worth mentioning that such Coulomb gas can be experimentally 
realized in thin films of superfluid 3He-A. 

The continuously variable part of the order parameter for 3He A thin 
film can be written as 

= de iz (3.1) 

where d is a unit vector. When applying the magnetic field exceeding 
Hc ~ 50 G perpendicular to the film the effective anisotropy field for vector 
d becomes the "light plane" type, (11) so the vector d can be treated as 
planar. 

The order parameter degeneracy space in this case is (S  ~ x S 1)/Z2. The 
factorization by Z2 is caused by pairs d, Z and - d ,  ~ + ~ giving the same 
value of the order parameter (3.1). 

The simplest point singularities for the order parameter (3.1) (where 
the vector d is treated as planar) are vortices of the phase X and dis- 
clinations of the vector d. Less trivial point singularities are so-called exotic 
vortices. (12) Each one of those is a combination of a vortex with a half- 
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integer number of circulation quanta and of a disclination with the half- 
integer Frank index. (12) 

When the film is rotated the formation of the lattice of these exotic 
vortices becomes possible. 112) The sign of the superfluid velocity circulation 
evidently will be the same for all the vortices of the lattice (it is determined 
by the direction of the rotation). The "disclination" degrees of freedom, 
however, remain at our disposal: the Frank indices of the exotic vortices 
can acquire arbitrary half-integer values and therefore form a lattice gas of 
half-integer charges with logarithmic interaction. So far it is not yet clear 
what particular kind of the lattice will be formed. 

In the experimental situation the melting of the exotic vortex lattice 
may take place at a temperature not high enough for phase transitions in 
the Coulomb gas of Frank indices to occur. In this case the observation of 
these transitions would be possible only if one stabilizes the structure of the 
vortex lattice by means of the regular array of pinning centers. 

4. G E N E R A L  S C H E M E  

The situation we encounter when studying the AF XY(t) model and 
Villain's odd model--two phase transitions the types of which are depen- 
dent on their relative order--proves to be typical of the whole class of the 
two-dimensional uniformly frustrated X Y  models. In the case of positive 
rational f smaller than �89 the ground state (in the Coulomb gas represen- 
tation) is a regular structure on a dual lattice consisting of positive charges 
1 - f  and negative charges _f.(3) If one denotes the discrete symmetry 
group associated with the degeneracy of this state as Gp (P is the order of 
the group), then the whole group spontaneously broken in the ground state 
is U(1) x Gp. 

As in the simplest cases considered previously, two different phase 
transitions can occur: (1)melting of the regular structure formed by 
charges 1 - f  on the background of charges - f  (vanishing of the mean 
charge of each sublattice); and (2)appearence of free excessive charges 
associated with the screening of their logarithmic interaction. We would 
like to recall that in the mean field analysis of such systems ~3-5) it has been 
supposed that only one phase transition takes place. 

If the dissociation of pairs of excessive charges occurs first (with 
increasing temperature), then it is the traditional BKT transition and the 
second transition is associated with group Gp. In the other case when 
melting of the "ionic-crystallic" structure of charges occurs at lower tem- 
perature, it is associated with restoring of the group Z 0 x Gp, where 1/Q is 
the minimal fractional charge out of those that happen to be localized at 
defects in the regular domain walls. The examples considered above show 
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that 1/Q does not have to coincide with f. In this case the second transition 
is associated with dissociation of pairs of charges + 1/Q. The helicity 
modulus is equal to (2Q2/rc)T at the transition point. The third opportunity 
(which is to be realized at intermediate values of the parameters) is 
simultaneous restoring of the whole group U(1)x Ge. A question of the 
type of this transition seems rather intriguing. 

The reason for our always mentioning the values of the helicity 
modulus 7 at the transition point is that in numerical simulations the tem- 
perature of the BKT transition is often determined as a temperature where 
7 is equal to its universal value at the transition point (2/~r)T (see, e.g., 
Refs. (2, 5, 13)). In case of BKT transition in a system of fractional vortices 
the universal value of 7(TBKT) changes. 

Shih and Stroud (5) interpreted the results of their Monte Carlo 
simulation as evidence for the existence of two phase transitions in the 
model (1.1) with f =  ~ and a triangular lattice, the second (with increasing 
temperature) of these transitions being the ordinary BKT transition. The 
analysis presented above allows us to decline this assumption: this 
sequence of transitions is impossible. In this context the results of Shih and 
Stroud's numerical simulation (5) give evidence rather to the existence of 
only one phase transition or reveal that the second transition is associated 
with dissociation of pairs of fractional vortices and occurs at temperature 
where j is equal to (2Q2/~)T (Q > 1) and not (2/7c)T. 

In the general case the possibility of splitting of a phase transition 
associated with the group Gp or ZQ x Ge into two or more different trans- 
itions cannot be excluded. It seems worth mentioning that even in the 
z4-model (Ashkin Teller model) splitting of the transition is possible (see, 
e.g., Refs. (14-16)). 

In the next section a simple example illustrating our general scheme 
will be presented. 

5. HONEYCOMB LATTICE, f=�89 

In the case of the model (1.1) on honeycomb lattice the corresponding 
Coulomb gas is defined on a triangular lattice. For f =  �89 the ground state of 

this Coulomb gas is a commensurate crystal xf3 x ~ of charges +2 on 
the background of charges -1 .  This state is evidently three-fold degenerate, 
so the whole group broken in the ground state is U(1)x Z3. 

In this model domain walls separating different ground states can be 

treated as consisting of links of a length , , ~  (in lattice units), see Fig. 4. A 
simple calculation analogous to that of Section 3 of I shows that at each 
link a charge + �89 is localized. For neighboring links forming an angle of 
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Fig. 4. Domain walls in Coulomb gas corresponding to the model (1.1) with a honeycomb 
lattice and f =  3. Charges +2 and -�89 are denoted by pluses and minuses, respectively. The 
domain wall links with positive and negative charges are shown by black and white lines. 

120 ~ the charges  are  oppos i te  in sign, and  in the case of angles 60 ~ or  180 ~ 
they are  of the same sign. 

Thus  for the d o m a i n  wall  consis t ing of l inks forming 120 ~ jo in t s  the 
charges of ne ighbor ing  l inks compensa t e  each other.  If  somewhere  a 60 ~ or  
180 ~ jo in t  occurs,  a charge  + �89 is local ized on it. The s i tua t ion  proves  to be 
quite ana logous  to tha t  encoun te red  when s tudying  the A F  XY(t )  mode l  
(see pa r t  I). N o t e  tha t  a l though  in the init ial  fo rmula t ion  posi t ive and 
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negative charges have had different values, this asymmetry is lost for 
charges localized on domain wall links. 

The carried out analysis makes it possible to enumerate all possible 
sequences of phase transitions for the considered model: 

l. Ordinary BKT transition (dissociation of pairs of integer vortices) and 
then (with further increasing temperature) melting of the x ~ x x / 3  
structure, characterized by the same critical exponents as a phase trans- 
ition in the three-state Potts model. (17) 

2. Restoring of the group Z 3 x Z3 and then the dissociation of pairs of 
fractional vortices with one-third of the circulation quantum. 

3. Simultaneous restoring of the whole group U(1) x Z3. 

With varying interaction function V(A~o) all these three opportunities 
should be realized. 

6. S O M E  O T H E R  E X A M P L E S  

In some cases there arises a complication not included in the general 
scheme of Section4. Consider Villain's odd model (i.e., the model (1.1) 
with f =  �89 on a honeycomb lattice. 

Figure 5a schematically gives one of the possible regular structures 
minimizing the Hamiltonian. Shaded hexagons correspond to charges 
(helicities) +�89 and light, to charges (helicities) 1 .  Bold lines are used to 
show the bonds for which the absolute value of the gauge-invariant dif- 
ference (A~o)rr'- ~0r- ~0 r, -@r~' is equal to 7c/4. For other bonds, (Aq~)~, 
equals zero. Summation of (zl~0)rr, along the perimeter of each hexagon 
gives _+ m 

On the background of this ground state (Fig. 5a) a domain wall with 
zero energy can be created (Fig. 5b). A regular set of such domain walls 
(Fig. 5c) is another type of the ground state having a regular structure. The 
additional (not related to symmetry) degeneracy described here is not con- 
nected with the particular form of the interaction function entering the 
Hamiltonian (1.1). 

At finite temperatures this additional degeneracy may be removed due 
to thermal fluctuations. In the case of the Berezinskii-Villain interaction 
(1.2) the term giving the energy of spin waves can be separated from the 
other part of the Hamiltonian, so the free energy of spin waves is identical 
for all configurations of charges. The difference of free energies of the states 
depicted in Figs. 5a and 5c is in this case caused only by different con- 
tributions from thermally activated bound pairs of excessive charges. These 
contributions are different due to dependence of the excessive charge core 
energy on the relation between its sign and the sign of the "background" 
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Fig. 5. Some examples of the ground states for uniformly-frustrated XY models: (a, b, c) a 
honeycomb lattice, f = � 8 9  (d,e, f)  a triangular lattice, f = � 8 8  (g,h) a square lattice, f = � 8 8  
Shaded cells have helicities 1 - f ,  light ones - f .  The bonds for which (Acp),r, = 0 are shown 
by thin lines. 
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charge (see Section 2). For low temperatures the difference between the free 
energies of two considered states is exponentially small in J/T. 

For the interaction function V(A~o) distinct from the one given by 
Eq.(1.2) (in particular for the physically interesting case V(A~0)= 
-Jcos(Aq~)) the difference between the free energies should emerge even at 
the calculation of the spin waves' free energy. In harmonic approximation, 
however, the total free energy of spin waves proves to be equal for both 
regular structures considered. Thus the question about the true nature of 
the ordered state at low temperatures can be answered only if anhar- 
monicities are taken into account. One can expect that it corresponds to 
one of the states depicted in Figs. 5a and 5c, the broken symmetry being a 
cross product of a group of two-dimensional rotations and of a discrete 
group of the sixth order, in accordance with the treatment of Section 4. 

An analogous phenomenon (existence of domain walls with zero 
energy and, therefore, of different ground states with regular structures) 
takes place also in the model (1.1) with a triangular lattice and f = � 8 8  
(Figs. 5d-5f). Here the shaded triangles correspond to charges + 3 and light 
- to -�88 The bonds for which the absolute value of (A~0)rr, is equal to ~/2 
are shown by bold lines and by thin--those for which (Acp)rr, = 0. 

For the model (1.1) with a square lattice and f = ~ there are two dif- 
ferent types of a regular ground state (Figs. 5g and 5h). In contrast to the 
previously considered cases, neither of them can be obtained as a regular 
set of the domain walls on the background of another ground state. 

In these and many other anomalous cases the type of ordering at low 
temperatures also can be found only when spin waves' free energy is taken 
into account. 

7. A H O N E Y C O M B  LATTICE: A CASE OF S M A L L  f 

Let us express f as an irreducible fraction: pl/q. A question of the types 
and temperatures of phase transitions in the case of q ~> 1 seems to be of a 
certain interest. It was discussed by Teitel and Jayaprakash (3) and by Shih 
and Stroud, (4) the conclusions these authors have arrived at being different. 
Teitel and Jayaprakash (3) are of the opinion that for large q the transition 
temperature decreases as l/q, but Shih and Stroud (4) do not see reasons for 
such a drastic dependence. As in both cases the temperatures of transitions 
were obtained not by analyzing the topological defects' energies but in a 
more indirect manner, we feel it appropriate to resume this question. 

Consider the model (1.1) with a honeycomb lattice and f =  1/(3n2). 
The corresponding Coulomb gas is defined on a triangular lattice. In the 
ground state the charges 1 - f  form a regular triangular lattice 

n x ~ n ,  the other sites being occupied by charges - f  (the case of 
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n = 1 was considered in Section 5). We shall obtain rough estimates of dif- 
ferent phase transition temperatures, not taking into account the interac- 
tion of topological defects belonging to different classes. 

Due to independence of excessive charges interaction of the type of the 
regular structure forming the ground state (see Section 2) the dissociation 
temperature of integer excessive charges can be taken to be f independent 
and can be estimated by a value obtained by Kosterlitz and Thouless (18/for 
an ordinary (without frustration) XY model: 

7~ 
TBKT,,~'~ J (7.1) 

If one takes into account only neutral domain walls and those with 
minimal charge density, the classification of the domain walls turns out to 
be the same as in the case n = 1 (Section 5). They can be treated as the ones 
formed by links of a length x/3 n, each link having a charge _+ 1/(3n) 
(Fig. 6). If neighboring links join at the angle of 120 ~ their charges are 
opposite in sign, in contrast to cases of 60 ~ and 180 ~ joints. Thus the 
minimal fractional charge localized at the defect of a domain wall regular 
structure (Fig. 6) equals + 1/(3n). The dissociation temperature for pairs of 
such charges can be estimated as 

7g 7~ 
(7.2) 

We will estimate the temperature of the phase transition associated 
with restoring of the sublattices' equivalence by calculating the energy of 

" 7 

Fig. 6. Domain wall with kink in the Coulomb gas corresponding to the model (1.1) with a 
honeycomb lattice and f =  1/(3n2). Only positive charges 1 - f  are shown. The charge 
+ 1/(3n) is localized on the kink. 
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the simplest point defect, which consists of the charge 1 - f  shifted to the 
neighboring site: 

2~ 2 
Tc~--~- fJ  (7.3) 

Comparing (7.1) to (7.3) one can conclude that in the c a s e f ~  1 (n~> 1) 
the dissociation of pairs of integer excessive charges (ordinary BKT trans- 
ition) cannot occur as an independent phase transition, because it is 
preceded by domain wall transition. The same dependence on f entering 
(7.2) and (7.3) does not allow us to unambigously find out whether the dis- 
sociation of pairs of fractional vortices will take place at higher tem- 
peratures than the restoring of sublattices' equivalence or simultaneously 
with it. The comparison of the numerical factors entering (7.2) and (7.3) 
favors the latter opportunity. The temperature of the phase transition 
(there is only one in this case) turns out to be proportional to f, as has 
been suggested by Teitel and Jayaprakash. (3) It seems that the mean field 
approximation of Shih and Stroud (4) is appropriate only for describing the 
ordinary BKT transition, which cannot occur for small f. In such a case, 
the reasons for the other kind of dependence of the transition temperature 
on f obtained by these authors (4) become clear. 

Note that (7.2) and (7.3) are valid for f =  1/(3n 2) only. In other cases, 
when, for instance, the ground state is a regular structure q x q (see Ref. 3) 
the temperatures of the transitions considered may prove to be quite dif- 
ferent. 
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After submission of this paper the author has learned that principle 
results of Section 2 had already been obtained by T. C. Halsey (J. Phys. C 
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